Magnetic resonance imaging permits in vivo monitoring of catheter-based vascular gene delivery.

نویسندگان

  • X Yang
  • E Atalar
  • D Li
  • J M Serfaty
  • D Wang
  • A Kumar
  • L Cheng
چکیده

BACKGROUND Gene therapy is an exciting frontier in modern medicine. To date, most investigations about the imaging of gene therapy have primarily focused on noncardiovascular systems, and no in vivo imaging modalities are currently available for monitoring vascular gene therapy. The purpose of this study was to develop an in vivo imaging tool to monitor a catheter-based vascular gene delivery procedure. METHODS AND RESULTS We produced gadolinium/blue dye and gadolinium/gene-vector media by mixing Magnevist with a trypan-blue or a lentiviral vector carrying a green fluorescent protein (GFP) gene. The gadolinium was used as an imaging marker for magnetic resonance (MR) imaging to visualize vessel wall enhancement, and the blue dye/GFP was used as a tissue stain marker for histology/immunohistochemistry to confirm the success of the transfer. Using Remedy gene delivery catheters, we transferred the gadolinium/blue dye (n=8) or gadolinium/GFP lentivirus (n=4) into the arteries of 12 pigs, that were monitored under high-resolution MR imaging. The results showed, in all 12 pigs, the gadolinium enhancement of the target vessel walls on MR imaging and the blue/GFP staining of the target vessel tissues with histology/immunohistochemistry. This study shows the potential of using MR imaging to dynamically visualize (1) where the gadolinium/genes are delivered; (2) how the target portion is marked; and (3) whether the gene transfer procedure causes complications. CONCLUSIONS We present a technical development that uses high-resolution MR imaging as an in vivo imaging tool to monitor catheter-based vascular gene delivery.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In Vivo Magnetic Resonance Imaging of Catheter-Based Vascular Gene Transfer

The purpose of this study was to develop an in vivo imaging tool to monitor vascular gene transfer. We produced gadolinium/blue-dye and gadolinium/gene-vector media by mixing Magnevist with a trypan-blue or a lentiviral vector carrying a green fluorescent protein (GFP) gene. The gadolinium was used as an imaging marker for MRI to visualize vessel wall enhancement, while the blue-dye/GFP was use...

متن کامل

Multifunctional MIL-S─CUR@FC nanoparticles: a targeted theranostic agent for magnetic resonance imaging and tumor targeted delivery of curcumin

Introduction: Noninvasive magnetic resonance imaging (MRI) and targeted drug delivery systems, usually referred to as theranostic agents, are being developed to enable detection, site-specific treatment, and long-term monitoring.   Materials and Methods: To elucidate the effects of coating on cellular uptake and biodistribution of n...

متن کامل

A New Theranostic System Based on Gd2O3 NPs coated Polycyclodextrin Functionalized Glucose for Molecular Magnetic Resonance Imaging (MMRI).

Introduction: Recent advances in nanoscience and biomedicine have attracted tremendous attention over the past decade to design and construct multifunctional nanoparticles that combine targeting, therapeutic, and diagnostic functions with a single platform to overcome the problems of conventional techniques for diagnosis and therapy with minimal toxicity.   Materials ...

متن کامل

Application of Magnetic Resonance Imaging (MRI) as a safe & Application of Magnetic Resonance Imaging (MRI) as a safe & non-destructive method for monitoring of fruit & vegetable in postharvest period

To investigate and control quality, one must be able to measure quality-related attributes. Quality of produce encompasses sensory attributes, nutritive values, chemical constituents, mechanical properties, functional properties and defects. MRI has great potential for evaluating the quality of fruits and vegetables. The equipment now available is not feasible for routine quality testing. The ...

متن کامل

ANALYTICAL STUDY OF EFFECT OF BILAYER INORGANIC AND ORGANIC COATING AROUND THE IRON OXIDE NANOPARTICLES ON MAGNETIC RESONANCE IMAGING CONTRAST

Background & Aims: In recent years, iron oxide nanoparticles have been used in contrast-enhanced magnetic resonance imaging for diagnosing a wide range of diseases. In order to provide biocompatibility and prevent the toxicity of the nanoparticles, using organic or inorganic coating around these nanoparticles is important for their application. The aim of this study is to investigate the effect...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation

دوره 104 14  شماره 

صفحات  -

تاریخ انتشار 2001